%4@ ) Wa\\

RADC-TR-89-112

Final Technical Report

August 1989 ' ¢
S

o)

STHE REDETERMINATION OF THE
1o ELASTIC, PIEZOELECTRIC AND

~DIELECTRIC CONSTANTS OF QUARTZ
<CAND THEIR VARIATION WITH
ATEMPERATURE

<

lensselaer Polytechnic Institute

H. F. Tiersten

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

DTIC

ELECTE &%

NOV.24 1989

ROME AIR DEVELOPMENT CENTER oy B
Air Force Systems Command L U-'
Griffiss Air Force Base, NY 13441-5700

¢




VuCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE.

REPORT DOCUMENTATION PAGE

Form Approved
OMB No. 0704-0188

ta. REPORT SECURITY CLASSIFICATION

1b. RESTRICTIVE MARKINGS

(If applicabie)

Rensselaer Polvtaechnic Instituto

UNCLASSTIFIED N/A

2a. SECURITY CLASSIFICATION AUTHORITY 3 DISTRIBUTION/AVAILABILITY OF REPORT

N/A Approved for public release;

2b. DECLASSIFICATION ; DOWNGRADING SCHEDULE distribution unlimited.

N/A

4 PERFORMING ORGANIZATION REPORT NUMBER(S) S. MONITORING ORGANIZATION REPORT NUMBER(S)
N/A RADC-TR-89-112

6a. NAME OF PERFORMING ORGANIZA WON 60 OFFICE SYMBOL [ 7a. NAME OF VIONITORING ORGANIZATON

L‘C'.T)

Rome Air Development Tenter |

6¢. ADORESS (City, State, ang ZIP Code)

Troy NY 12180-3590

7b  ADORESS ((ity, State, ang ZIP Coae)

Hanscom AFB MA 01731-5000

8a. NAME OF FUNDING . SPONSORING
QRGANIZATION

Rome Air Development (Center

3p OFFICE SYMBOL
(If applicable)

ZSE

J PROCUREMENT NSTRUMENT DENTIFCAT'ON NUM3ER

F19628-34~X~0004

8¢. ADDRESS (City, State. ana Zir¥ Code)

Hanscom AF3 MA 01731-5000

10 SOURCE OF “UNDING NUMBERS

PROGRAM PROLECT TASK NGAK UNIT
ELEMENT NO NO NO ACTESHION NO
61102F 2205 Ji 53

"1 TITLE (incluge Security Classifization)

THE REDETERMINATICN OF THE ELASTIC, PIEZOELECTRIC AND DIELECTRIC CON

TANTS OF QI'ARTZ

AND TUEIR VARIATION VWITH TEMPERATURE

12. PERSONAL AUTHOR(S)

H. 7. Tiersten

13a. TYPE OF REPORT 13b TIME CQVERED 14. DATE QOF REPORT (Year, Montn Jay) (15 PaGE COUNT

Final FROM _Feb S84 10 Teb 87 August 1989 50

*6. SUPPLEMENTARY NOTATION

M f s

'7 COSATI CODES *8 SUBJECT TERMS (Continue on reverse if necessary and identify dy Siock numoer) :
FiELD GROUP |  SUB.GROUP Material Constants Piezoelectric {onstancs }

08 07 J Quartz Dielectric Constants ’

20 | 12 - clastic “onstants Temperatyre Jerivatives ' 3ee reverso!

'9. ABSTRACLT (Continue on reverse :f necessary

of the effective constancs.

can be obtained from
T-cut.
electric constants from the measurement of the

any identify dy biock numober)

This 1is the final report on the analytical work reauired for the redetermination of the
elastic, piezoelectric and dielectric constants of quartz ind the termperature derivatives
Anaiyses are presented for hoth thickness excitation ind
lateral excitation of pure thicimess vibrations, and the results are specialized to doubhly-
rotated, singly~rotated and unrotated cuts of quartz.
measurements using lateral excitation of unrotated cuts znd one rotatad
Simple relations are provided for the determination of the plezoelectric ana di-

frequencies of thickness excited thickness vibrations.
pure thickness vibrations is presented for both the cases of thickness excitatioa ind lateral
excitation, and the results are specialized to doubly-rotated, singly-rotated and nnrotated
cuts of quartz._ It is shown that the temperature derivatives of the effective elastic
constants of quartz can be obtained from the same cuts as those used in the (see

It is shown that all 2lastic constants

fundamental and third harmonic resonant
An  analysis for che perturbation of

reverse)

20 NSTRIBUTION/ AVAILABILITY OF ABSTRACT

E UNCLASSIFIEDIUNLIMITED [ SAME as RPT O HT¢C 1SERS

21 ABSTRACT >ECURITY CLASSIFICATION

UNCLASSIFIED

223 NAME OQF RESPONSIBLE NOIVIDUAL

22b TELEPHONE (Include area Code) ‘ 22¢. OFFICE SYMBQL

Alfred Kahan (617) 3177-4340 i QADC (TR
DD Form 1473, JUN 86 Previous editions are obsolete. SECURITY CLASSIFICATION DF_"wi§ PaGE
INCLASSIFIED




UNCLASSIFIED

Block 18 (Cont)

Fundamental Constants
Effective Constants
Reference Temperature
Reference Coordinates
Uncompensated Cuts
Compensated Cuts
Unrotated Cuts

3lock 19 (Cont)

(10

constants.

Rotated Cuts
Harmonic Overtones
Thickness Vibrations
Crystal Class
Trigonal Crystal
Lateral Excitation
Thickness Excitation

Ele~troded
Unelectroded

Frequency Perturbation
Resonators

Energy Trapping
Transverse Variation
Fundamental Mcde

ctermination of the constants plus one more, which consists of a single rotation about

It is noted that the measurement of pure thickness vibrations is inadequate for the
det=rmination of the temperature derivatives of the effective piezoelectric and dielectric
However, the solution for the trapped energy resonator is presented and

discussed briefly anc it is noted that those temperature derivatives can —eadilv be
obtained from measurements of trapped energy resonance in thermally compensated cuts.

~hen the measured dat: is available all coefficients will be determined from the analvtical

work presented here.

Acocession For

| NTIS GRARI
DTIC TAB 0
Unannounced 0

Justifiestion |

By

Distribution/

" TAvall and/or

Dist Speocial

!

_Availabilit.y Codes

UNCLASSIFIED




1. Introduction

The elastic, piezoelectric and dielectric conmstants of quartz and
their behavior with temperature have a significant influence on the
frequency characteristics of various quartz devices and their variation
with temperature. Clearly, the more accurately these quantities are
known, the more precisely quartz device structures and their orientations
can be described. The increased precision can provide advantages in both
the design orf and improvement in the characteristics of resonant quartz
devices. At the present time the values of the elastic, piezoelectric and

. . 1 P
dielectric constants are those of Bechmann at 25°C and the temperature
derivatives of the elastic constants that are used are those of Bechmann,
2 cse .

Ballato and Lukaszek™, The accuracy of the coefficients currently in use

has been subject to question, in particular by Kahan3, who made a
statistical comparison of the best measured data available with calcula-
tions based on different sets of material coetfficients and concluded that
the material coefficients and their temperature derivatives should be
redetermined.

Before proceeding, it is important to note that since the existing
temperature derivatives of the elastic constants of quartz were evz.,uated
from the data using the linear theory of elasticity, which can only bé
referred to the temperature dependent intermediate position of the plate,
they are the temperature derivatives of certain effective coefficients
rather than the fundamental constants, which are referred to a fixed
reference position at one temperature. As a consequence of this, the
first temperature derivatives of the fundamental elastic constants of

4
quartz4 were subsequently obtained from the data in Ref.2 within the




framework of the proper rotationally invariant nonlinear thermoelastic
description, in which the vibration is treated as a small linear dynamic
field superposed on the thermally induced static biasing state and referred
to the temperature-independent refeéence position of the plate, Since the
vibration is referred to reference coordinates, the mass density and plate
thickness are constants independent of temperature and the normal to the
major surfaces of the plate does not change its direction with respect to
the principal axes of the quartz crystal with temperature. Since in
quartz the principal axes only extend and contract with temperature and
all others skew, the actual normal te the intermediate position of the
surfaces of the plate changes with temperature. This change in normal

(or skewing of the axes) was neglected in Ref.2, which uses the linear
description referred to the intermediate coordinates. This is the primary
reason that the nonlinear description, which permits everything to be
rererred to the unchanged reference coordinates, has a significant
advantage over the commonly used linear description. However, in the
determination of the first temperature derivatives of the tundamental
elastic constants in Ref.4 only the elastic (and not the piezoelectric)
solution was used in obtaining the temperature derivatives from the data
and the temperature derivatives of the piezoelectric and dielectric
constants were expressly ignored., Furthermore, the (rather thick) elec-
trodes on the quartz plates used in the measurements were ignored in the
treatment, as in Ref.2, This is probably the major source of inaccuracy

in the existing coefficients,

4‘_\




The vibration solution alluded to in the previous discussion is the
pure thickness solutions, which ignores the transverse mode shape due to
the finite dimensions of the electrodes and/or the quartz plate. This
procedure is reasonable in the case of thermally uncompensated cuts because
the iniluence of the transverse mode shape is small compared to that of
the thickness behavior. However, in the case of thermally compensated
cuts such as, e.g., the AT and SC cuts, which are the most iwuortant in
practice, the transverse modal behavior is of crucial importance in
determining the variation in frequency with temperature because for those
cuts the change in frequency with temperature for the pure thickness mode
of interest vanishes. Furthermore, the temperature dependence of the
motional capacitive effect of the driving electrodes on the quartz plate,
which depends on the temperature derivatives of the pertinent piezoelectric
and dielectric constants for the thickness mode of interest, causes the
well-known apparent shift in angle6 of the zero temperature cut elecctroded
quartz plate, 1In a calculation of the temperature dependence of the
resonant frequency of contoured AT-cut quartz plaCes7, the temperature
dependence of the motional capacitive effect of the thickness mode of
interest had to be estimated from temperature measurements on AT-cut quart:z
trapped energy resonators with large electrodes because the temperature
derivatives of the piezoelectric and dielectric tensors are not presently
known., In addition, because of the inaccuracies in the first temperature
derivatives of the fundamental elastic constants the calculated rotation
angle of the zero temperature AT-cut unelectroded flat plate is -35015',
which is referred to as nominal because the rotation angle of the actual

cut is about -35°21', The difference of 6' is primarily a result of the




inaccuracy caused by the electrodes that were on the plates when the
measurements were made and were not considered in the accompanying
analysesz’a, Similarly, in the case of the doubly-rotated SC-cut quartz
plate using the same 6' correction to the 8-angle, we have found8 with
the aid of &2 measurement by Warner9 that the required correction to the
p-angle is about 48', which is quite a bit larger than the required
correction to the &-angle., The greater error in the ®-angle is not
surprising because it relies on data obtained from the measurementlo of
doubly-rotated cuts. Furthermore, as in the case of the AT-cut, the
motional capacitive effect due to the driving electrodes on the SC-cut
cannot be calculated because the temperature derivatives of the piezo-
electric and dielectric constants are not presently known, Again the
effect has been escimated8 from measurements by Lukaszek11 on that
particular cut, However, it is clearly undesirable to perform such
measurements on every zero temperature cut, and the error in the g-angle
borders on the intolerable,

In view of the existing situation, the elastic piezoelectric and
dielectric constants of quartz and their first four temperature deriva-
tives are being redetermined at a fixed reference temperature of 25°C,

In the earlier determinationl of the elastic, piezoelectric and dielectric
constants of quartz only thickness-excitation of thickness vibrations was
employed along with a judicious use of rods and contour modes of plates
and the then existing state of analytical knowledge. As a consequence,
only the elastic coustants <11 and e could be determined from unrotated

cuts and the others had to be determined from some singly- and some

doubly-rotated cuts with an attendant loss in accuracy. Under this program




both thickness-excitation and lateral-excitation of thickness vibrations
are being employed. This should result in a significant increase in
accuracy.

1n order to determine the material constants from measurements ot
thickness resonances an analysis of an arbitrarily oriented quartz plate
driven into thickness vibrations by either thickness-excitation or lateral
field excitation has been performed, For the case of thickness-excitation
the analysis is restricted to orientations for which the three-coupled

bl . . . . .
waves  essentially uncouple and one dominates the vibration. This holds
. . . 12 . . 29 N :
tor all orientations except those for which 0 < ¢ <+157 and + 227 12 <30 .
For the case of lateral excitation this restriction cn orientation holds

even though the wawes are not coupled because they are almost degenerate.

c and ¢ can be

The analysis reveals that the four constants €11r a4t 14 66

determined from measurements on the three unrotated cuts and that the
remaining two constants €37 and c13 can be determined Irom measurements
on rotated Y-cuts. Comsequently, no doubly-rotaced orientations are
required for the determination of the constants, Clearlv, this should
result in a significant increase in accuracy both because of the simpler
orientation and the increased directness of the equations. Since the
plezoelectric constants are being determined from the measurement of

. . 13 .
successive thickness overtone resonances ~, they should be more accurare
. . . 1 . .
than in the earlier work , wnhich used antiresonance measurements, the
interpretation of which requires a great deal of insizht., The dielectric

constants are also Deing determined from the same measuremencs of over-

tone thickness resonances.




In order to determine the temperature derivatives of the effective
material constants a perturbation analysis of the remperature dependence
of the resonant frequencies of arbitrarily oriented quartz plates vibrating
in pure thickness modes has been performed. Since as already noted a

. . . . .. 14 .
proper rotaticnally invariant nonlinear description which enables the

s
equations to be referred to a fixed reference position at a fixed reference
temperature To’ is being employed, the geometry and density do not change.
As a consequence, the rotation of the plate normal with respect to the
crystal axes accompanying a temperature change, which is a result of the
o]

anisotropy and was ignored in earlier work , is automatically inclnded
here. In the description we employ the changes in the effective elastic
and piezoelectric constants have less symmetry than the fundamental
elastic and piezoelectric constants. As a result, in the general aniso-
tropic case there are 45 independent changes in the effective elastic
constants and 27 iandependent changes in the effective piezoelectric
constants as compared to 21 independent elastic comstants and 18 inde-
pendent piezoelectric constants, In the case of quartz there are ten
indenendent changes in the effective elastic constants and four independent
changes in the effective piezoelectric constants, as compared to six
independent elastic constants and two independent piezoelectric comstants.

Since under this program laterial field excitation is being emploved
in addition to thickness excitation, no doubly-rotated orientations are
required for the determination of the temperature derivatives of the
effective elastic constants even though a larger number of coerfficients is
to be determined than herecoforez. Since the piezoelectric coupling is

small in quartz, the changes in the piezoelectric and dielectric constants

cannet be found with accuracy (Tim the measurement ~f (.e change in thickness




resonant trequencywith temperature of uncompensated cuts. The changes in the
effective piezoelectric and dielectric constants can be accurately decer-
mined from the measurement of the temperature dependence of the resonant
frequencies of the tundamental or harmonic overtone trapped cnerzy moces
in compensated cuts, such as AT, SC and BT cuts, Clearly, the changes in
the ten effective elastic constants can readilv be determined from data on
the temperature Jdependence of the thickness resonant trequencies or the
uncompensated cuts, In particular, Zive can be determined trom thue

. ) - L .
unrotated cuts and four can be determined from the one rotated Y-cut
that is needed for the determinactica of €13 and c33, One additional out
consisting Oof a vrotation about Z, preferably of about 457, is reguirea o
obtain the remaining one,

Since trapping of all modes will be emploved to eliminate couptiin:z
to unwanted efrects, all coerfficients determined from the pure thickness
analysis will subsequently be refined by successive iteration usinuz the

L . . 16 . .
analysis rtor the trapped cnergy resonator |, Ffinally, redundant checxs

will be made using other orientations and overtones, including, or course,

the thermally compensated cuts.

2. Basic Equations

The linear electroelastic equations for small fields superposed on

: ) L . ‘ . N S
a bias, which are required in this work, may be written in the form

4 = A U : = - 3
kL\/'L “ou', . .,L’L 0, (—.I.l
where
~ ~ 4 ~n ~ A ~n
K = K + oo =8+ 2,2
M TR TRy L L L' e




and
=4 c u + iy PV e u IS (3 1)
Lv :LJM& :‘,M e}".L‘,v,M 3y wL IMv V,.V- VLMV!M B (2,3
e N ~n N
= A “+ ) g = - A = P
KL» “GLVMauy’M _RMLVV’M , -C«’L AR'LMVU‘/,M Loy e (2.4

Equations (2,1) constitute the stress equations of motion and charge
equation of electrcstatics referred to the reference coordinates of

material points at the reference temperature TO i.e before the static:

’ e

deformarion resulting from the change in temperature to T occurs, which

are called retference cecordinates and are denoted KW’ In Egs.{Z,1) and

(2.2 K, , D, and u  denote the components of the small field Piola-
L .

[P

Kirchhori stress tensor which is asymmetric, the reference electric
displacement vector and dynamic portion of the mechanical displacement

vector, respectively, and = denotes the reference mass densitv, In (1,2)

~

~
for convenience we have written both KLV and ;i as the sum of a linear

~

w . ) on n .
and ji and a nonlinear static part &1v and ~,. The linear

1
22

o~

dvnamic part

~ -
A
S

dynamic portions K{_ and = are the ordinary symmetric mechanical stress

tensor and electric displacement vector of linear piezoelectricity and are

given bv the usual linear piezoelectric constitutive relations in (2,6 3),

~

where = denotes the linear dynamic electric potential, The quantities
C e and <« denote the second order elastic iezoelectric and
StvMa’ MLy M > P

. : . ) . . -~
dielectric comstants, respectively, The nonlinear static quantities XL

T . " 9 5 ) . . ;

and < in (2.2) and (2.4) are the portions of the asymmetric Piola-
Kirchhofi stress tensor and retference eclectric displacement vector resulting

frem the piezoelectric vibracion in the presence of the biasing state

caused bv the temperature change (T-T ).
0

10




The symbols “GL\MQ’ ARMLV and 2y denote changes in eriective

material quantities, which can be expressed in terms of fundamental

14,17

. . . 4, :
material constants as shown in previous work . However, since

T

temperature derivatives of the material constants higher than the Iirs
are to be determined in this work, it is not rfeasible to zry tco Zind the
temperature derivatives of the fundamental material constants here beciuse
the required nigher order fundamental material coemstants orf juartz ar-

not presently known and would be prohibitively costly to evaluate. Jonsc-

quently, we take the altermative course of evaluating the chanzges in =ho

R i : - . . .- : Wi O ey e
effective material constants “GL\MQ' “RMLx’ iy R this work, wherc
i‘ -
< 1 a d -
2= 00 — «IT-T7 ) — . NN
i— 1, J _n!
n=1 dT T=T
0
Before discussing the symmetries of the GL‘W and the RWL and the
[avtes Sl
indicial notatior employed in Egs,(2,1)- ¢2,3), we consider it idvisapi.

for clarity to briefly outline the nature of the delormation that must Se

dccounted for in the description, At the ratf2rence temperatura [_ the

-~

points of the body are denoted by the reference coordinates X.. When the

—

temperature is changed from To to T the points of the bodv move to new

Y

positions, which are called intermediate coordinates and are denotoed bv *

where 2 = I (X ), Clearly, the static displacement w mav be -denotod
: ’ W

wo=T-X When the body is vibrating at some temperature T, the points or

the body move from I to the present position y.. where v. =903
. :

) i L 72

?.gf;’XLS.C, = v, (X ,t). Clearly, the dynamic displacement u mav be

denoted u = v - I arg we have y = X +w + u, At this point it is5 alseo

P -~ ~ ~

purposeful to 10ke th. t if at the rofereonce temperature T 1 noint o~n *the
o

,,<
p—




surface of the body has unit outward normal N relative to the principal

L
axes of the crystal, when the temperature is changed to T that same point
has a different unit outward normal va relative to the principal axes of
the crystal. In the earlier work on the temperature derivatives of the
elastic constants, which was based on the Llinear theory, the equations
could be referred only to what are here called the gy conrdinates and the
difference between v and N was ignored. Since all geometric measurements
are made at the reference temperature TO and when the equations are
referred to the XL coordinates, fthe density, thickness arnd surface
normal N never change, it is clearly significantly advantageous to use
this d.:ccription both for simplicity and accuracy.

The alorementioned use of reference coordinatas is the reason that
the erffective constants GLyMy and RMLV have less symmetry than the tunda-

mental elastic and piezoelectric constantsc and . respectively,
P 2LvMy eMLv P g

Although the ¢

LMoy admit interchanges on each pair of indices, the G
ALY

LM
have only the symme ~cy
- - Ca
Sy T GoLy (.6
and RWLY Nave no symmetry. Consequ-n.ly, in the general ainisotropic case
there are 45 independent effective G and 27 independeat effective
P LvMoy P tve Ay,
whereas there are 21 independent nd 18 ind ndent . Th
pe SLVMQ a cpe ey, e
discussion in the above paragraph also makes clear the reason for the
mixad notation of capital latin and lower case greek indices. Althoucgh

this can be eliminated on the ¢ in Eqs.(2.3), it shouild not

LMy 209 Cypy

be eliminated on the GL

. " . , L
My and RMLY in Egs.(2.4) because it emphasizes

the lack of symmetry. Consequently, we retain the mixed notation, which




is consistent with the notation of Refs.4, 14 and 17, throughout. The
cycles above variables have been introduced for consistency with Refs.l4
and 17. We have employed Cartesian tensor notation and vector notation
interchangeably and the convention that a comma followed by an index
denotes partial differentiation with respect to a reference coordinate,
the dot notation for differentiation with respect to time and the summation
convention for repeated tensor indices.

Since the quantities referred to as nonlinear ars static, from (2,1)
and (2.2) we obtain the dvnamic linear stress equations of motion and

charze equation of electrostatics in the form

Y=ol S =0, (2.7)

which with the linear constitutive relations (2.3) vield the usual equations
of linear piezoelectricity, We further need the matrices of the elasti..
plezoelectric and dielectric comstants of quartz referred to the princio
axes of the cryscal, which is in class 32, These matrices may be written

. . 18
in the form

‘i1 S22 S13 S 0
°12 11 %13 S Y 0
oq ‘13 ‘13 3 0 0
“15 i ° Chp Y 0
0 0 0 ] c44 c14 .
0 0 0 0 e 66 || Se6 T T G117 1)




’ ®11 i 0 e O 0
eip = 0 0 0 0 "€y ey
! 0 0 0 0 0 0
i 0 0
3370 SO
EO 0 333 (2,3)
b

; . ; .19
in which we have emploved the conventional compressed notation

The equation for the perturbation in eigenfrequency obtained from

’

. ) . . n 14
the perturbation analvsis may be written in the form

A =H /2w wo=w -4 (2.9
‘ T

! 2 :
(5%

where w, and w are the unperturbed and perturbed eigenfrequencies,

respectively, and

e 1

e T

oA 5 ) SURE . )
G Aq ; +2 £_2 - A £ £ dav . (2,
Lo M %2 MOy, L ARUWV , L%, M A‘LM ,L7 MJ 0 '
The vector g: denotes the normalized mechanical displacement of the _.th
unperturbed mode and " denotes the normalized electric potential for the

~th mode, i.e,,

g” = u¥/N | = 2H/N (2.11)

- -

where

L4




In (2.11) and (2,12) us and 5“ represent the mechanical displacement and
electric potential, respectively, of the uth eigensolution of (2,7) with
(2.3) subject to the appropriate boundary conditionms.
. 5 . \
Since Eq.(2,10) contains AGLvMa’ QRMLV and AQLM’ we need the
matrices of these quantities referred to the principal axes of the quartz.

Since QLM = GML’ the matrix for CLM is the same as the matrix for ¢ _ given

M
in(2.8)3. However, beforewewrite thematrices for the G’vMyandRMLy’ we
must introduce a convention for a larger range compressed notation than

the one commonly emploved because of the reduced symmetrv on G.. and RW
‘ ! - LvMoy MLv

compared with SLvMa and Syl respectively, To this end we incroduce the

20 . .
convention shown in Table I, Then, using results of Mindlin for matrices

having these symmetries for quartz, we obtain the required matrices in the

torm
11 %2 Sz G O 0 &y, 20
G, G, Gp5 G O 0 -G 0 )
G,3 Gy Gg3 O 0 0 0 0o 0
Gy <Gy O G, O 0 b 00
Soq = Il © 3 3 0 G5 S, 0 G S,
0 0 0 0 G, G O G, S
67 6, O G 0 G, O 0
0 0 0 0 Gy S O Gy Sy
0 0 0 0 67 Gg9 0 Gy G |,
66 " Ce9 = 511 7 Cpo-

L5




Ry, Ry 0 R, 0 0 Ry O o
Ryp = || © 0 0o 0 Ry Ry 0 Ry, R 1
O _ f
0 0 0 0 0 Ry 0 Ry |-
SIS

3, Pure Thickness Vibrations

We rirst consider lateral =xcitation of cthickness vibrations secause
in that case the major suriaces of the plate are unelectroded in zhe v icinice
or the mode and, consequentlwv, the three waves are -cxactly uncoupled it -he
surfaces at resonance in the zeneral anisotropic case. To =his =2nd at :he
reference temperature To we locate the orizin of coorainactes ac :the centoer
of the plate of thickness h, with the X3-coordinate directed along the

trigonal axis and the X,-coordinate directed along a digonal axis., We denote

the unit normal to the top major surface ol the plate at To bv N.. The
N

plate is driven into thickness vibration Sv an eicectric Zield of magnitude

iwte . . . . ) .
an ., which at temperature FD 13 directed along the unit vector 3.. in
{ N
the plane of the plate and, hence, normal to NK 30 that it satisfies
N.S_ =10 (3.1

but is otherwise arbitrary. Now, substituting from (2,3) into (2,7), we

obtain

+ I =
CLvMan,ML eMLv’,ML o v

3 153 - (_;.:)
SIMv s ML M

€52
I
-
~

ML o

which constitute the four coupled equations of linear piezoelectricitv in

u and © and where we have taken the liberty of omitting the lower script 2

L6
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on LMy Since the major surfaces of the plate are traction-free, we
o'

have the boundary conditions

Lx{f) (3.3)

and since the electric field in space vanishes at NLXL=:tm and we are
concerned with the thickness solution, we effectively have the electrical
boundary condition

59 -

NL L ?

(3.4)

on the major surfaces of the plate, The substitution of (2.3) into (3.3)

and (3.%) yields

. +oag D) =
NoComeen AP ) T 0

- z = X == (3.
VL(eMLyuy,M eim® M) 0, at NK‘K h. '3.3)

s

As a solution satisfying the differential equations (3,2) and

Lwt
boundary conditions (3,5) with a driving electric field EOSKeL , we take
_ - iwe ~_ o .o o] - iwe
u/-—AV sin NKXKe , ¢=1(B 51n'!NKXK-+E (SKXK rNKXK)] e . (3.6)
where
r=N¢e¢ S /N e N (3.7)

K'KMM R'RS'S°
and is required to assure satisfaction of the boundary condition (3.,3),

The solution in (3.6) satisfies (3.2) provided

(3, "T8) 4, = 0, (3.3)
B = AN N (3.9)

N Ny Ay NRNRERR

where

17




~ ~. o ~ 2
T =¢c +eel/e, T= o Y /7 (3.10)

and we have introduced the notation

~

?

oy ™ NLNﬁCLyM&’ e, = NeNgersy s € = Npe N, (3.11)

which is convenient in this work and has nothing to do with the compressed
{p,q) notation in Section 2, Equations (3.8) comstitute three homoyeneous
linear algebraic equations in the AJ and the condition for a nontrivial

solution yields

'z -8 =0, (3.12)

Equation (3.12) is a cubic in T, which for a given NL yields three real

21 J . . -
positive c(n)(n==l,2,3), which we assume to be distinct. Each c(n)

yields amplitude ratios

(n)  ,(n)  (n)
A eaM g (3.13)

()

v

when substituted in any two of the three equatioms in (3.8), where the A

satisfy the crthogonality relations

A " ‘)
A o s (3.14%)
Y Y ('.b) -V
and N( ) is the uormalization factor, Defining the normalized amplitude
ratios by
N P (3.15)
¥ Y ()

we obtain the orthogonal matrix 5Jy° The substitution of the solution

functions (3,6) with (3,7) into the boundary conditions (3.5) vields

18




VE A cos"h +e’EY =0, (3.16)
Yo X Y

and (3.5), is satisfied identically by virtue of (3.,9), where

—~
to
.
o
~1
—

r - N
e = VSeuny T TN NCupy

From (3.16) we see that the exact condition for pure thickness rasonanre

under lateral field excitatiom is
cos "h =0 or ~ o= /2 a=1,3.3 .... . NS

With the aid of the orthogonality of the 5,¢ we mav wrilte “J,l6) in
a particularly illuminating form, in which each thickness mode is uancoupled,
simply by referring the equations to the coordinate system ccomnsisting of
the eigenvector triad. Although the form is not of gZreat use to us in
this case of lateral excitation, it is important in the case of thickness
excitation, which is treated next., To this end we transrorm (3,1i6) to

the eizenvector triad with 2 and write
WV

and substitute from (3,19), into (3.16) and employ (3.3) tfor the normalized

elgenvectors 3(&) and make use of the orthogonality of the EJ& to obtain
b’

(V)2 - R
T 7'A cos "h+ 2 e'E =0, (3,200
v Xy

which constitute three uncoupled equations (ome for e=ach v) giving the

. T, - o . 3
amplitude Av in terms of the driving amplitude E

In the case of thickness excitation, which we now treat, we still

(098
-

have the differential equations (3.,2) and the boundary conditions 2,

but instead of 2, 4). we have




e at NLXL =+h, (3.213

On account of this, although the solution for u, is still of the rform shown

in (3.6)1, the solution for % now takes the fomm

5 = LB sia TN X+ (c + %’) NK‘YK; eVt (3.22)

These solution functions satisty the same differential =2quations, i.:
(3.2), as in the case of lateral excitacion because the 2xpression Zor _
in (3.22) differs from the one in (3.8), only by terms linear in ¥,.

. i N

Conseaquencly, E£qgs.(3.8) - (3.13) s5till hold for the case or thickness

excitation. VYNow, substituting tfrom (3,22) incto ¢2.21) and -=mploving '3..L"
we obtailn

= - o = Y -~ 1
C (eyAq/eh)31n 'h (3.23)

As noted in the Introduction, for the case of thickness excitation the
analysis is restricted to orientations for which the three coupied waves
at the conducting surfaces of the plate essentially uncouple and ome
approximately, but very accurately, dominates each uncoupled vibration,
Under these circumstances only that component of the traction vector in
the direction of the eigenvector of the dominant wave need be considered
at a time., The successive consideratioa of the three distinct eigen-
directions yields the three approximate, but very accurate, uncoubled
solutions. To this end we substitute from (3,6),, (3,22) and ¢3,23)
into (3.5)1, which is equivaient to (3,3), 1and rransform f3.5\1 with
and substitute from (3.19)2 and employ (3,8) for the normalized eigen-
{

vectors 2 " and the orthogonality orf the 3  to obtain

b4 -

-

20




- e e -
NSRS “- A . - te . o = 3/
AvL ,(v)cos ‘(v)h ~ sin '(v)h e, 3 (3.24)
where
a = K o 9
e, quey. (3.25)

Equations (3.24) are the uncoupled equations, one for each v (vw=1,2,37,
which zive the amplitude Av tor the vth pure thickness mode in terms of :the
driving vostage V, rrom (3, :4) we obtain the condition for resonance of

the vth mode in the form

)
tan 7, h = 7 h/k; ‘3,26)
where

2 ] -
kD= () ez (3.27)

<

The forms shown in Egs.(3.24) and (3.26) were obtained because :for
convenience the mass loading due to the finite thickness of the electrodes

was Lgnored in Egs. (3.3) and (3.5)1. If the mass loading had Leen included,

2y
in place of (3.26) we would have obt:ained"‘z"'3

2 2 2
" h =" h/ (k™ +R77 h~ (3,29
tan " v) /( N (nh ). )
where R = 2:éh'/:oh and :é and 2h’dencte the mass density and thickness of

an electrode, respectively, Since the piezoelectric coupling is small in

quartz, the usual expansion of (3.29) about =, ‘h = a~/2 (n=1,33,..."

(V)
2
with the aid of (3.10), yields™"
2
=(v) 1/2 4k” k
= DT /¢ . v
n 2h\o } (1 > o R), (3.30)
0 n -




from which we readily obtain

n a
. - = 2w - e S
(w Bwl)/Bwo 32 KV/9ﬂ , (3.2D)

3

”
to order kv and where for small coupling

2 ) g )

w = (ﬂ/Zh)(c(v)/oo) (1 -ki/2). (3.32)

Equation (3.31), wich (3.32)1, is useful for obtaining the piezoelectric

constants from measurements of the fundamental and third overtone thickness
excited thickness resonances,

In order to use the rforagoing zeneral aaisotropic results for pure
thickness resonances to evaluate the material conmstants from data at

T = 25"C, we must consider various specific orientatioms of quartz, To

24
this end we introduce the conventional IEEE notation for doubly-rotated

cuts of quartz and write (Y, X, w, 1), 3, which yields the relations

N, =-cos 35 sin 2, N, = cos 3 cos

<, N, = sin 3, (3.33)

for the components of the normal to the major surfaces of the plate at Tn

in terms of the rotation angles ¢ and §. 1In particular, we need the

~

expression for c/l, e, g, e; and Evp for doubly-rotated cuts of quartz,
Y Y Az

With the aid of (3,11), (3.17) and (3,10)1 and the matrices in (2,8), we
obtain

. = + + + N

¢1p T NNiepg N2N2°66 DNy T NNae

.., = + 2 c.o. =2 +NONL (¢, L+

o T NpVplegatege) FONINge oy = AN Nye NN le g te )

Can T Wy NiCge * N2N2°11 Wolaeq, + NNacy

Ca3 T NV Oy, T Nppey PN ey e, )

33 7 VNt NaNe, PNSNye s 13,34




5 = N - NN
e = NNpep - ¥,
e.=- 2N N

~
A~ = h = -~
= lel“ll ' NZNZ
/ - R -
= N, e - S N.,e - 5N , -
@) T 3Ny TRy T 2Ty
el =-3. N2 =S N2 -SNoe,
- i - - L L vl - - I -~
20 = 3, Mye, - 3\N,e. - TN N2
- a~ - - - -~ -~ —
T = “J.S.i,,‘ - .o,
PR 272
Ty Ty TR Sy T
. A D - .
Th, = <y, =22, C‘B =
I P .=t ) - -~ PN
which with the roots of ¢ ar (3,220
ralations we negd ZO0r i1nv rlentatilon w
i3 not zhat differcnc {zom <, - in

[OW)

e

e - N.N_ e,
11 27371487
N,e e, =0 ¢ 3.35)
3714 73 ! ’
BEIEEOEEE LR 3360
(N,N, e - N N.e NN
S Aab B N A R IRPE
- TN -— T NT DI
[ N AT T R R
a“ P - - - > -t —_ - -
Lo- N NLe,, LT
. 2ttt
R S S0
Li BEENSIS]
I DTN ; T, 0= o,
- L - ) [
1ot ‘:')\ = 2. . -’-«'l'“’
2 33 33
ecadily -2nables us o ~hHtain the
Wladl, vO TIOW 0Le TNl s inCwe
23% L3 neglilible o7 1ii o srienta-

tions and is iznored Irom her2 con in this work,
Since for the X-cut z = =/2 £ =0, from (3,33) for the X-cut we have
RIS A TR IUA SPOF
which with 15,35 - (3.37) and (3,39} 7iclds
c,, = ¢, : =0 =0, ¢, =2 Soo= 0 : = 0
11 SIS © 13 Pt b6’ 23 lar 723 La
Y= L= Po= - =) =3 s s .
2= 311 o= 0, ¢ 0= I 3":'11, *y = R * -
B
- S
Z,, =c¢ -— ., =0, C,. =), T, =c ., =, T =0
11 11 - L2 13 T2 ho’ 23 Tiv 73 .
PSS |.‘; _.‘\




The substitution of (3.43) into (3.8) vields the two uncoupled svstems

[#1]
i
)
-
W
<

(¢
]
¢
0
+4-
(4
e
]
o
[
|
(9]
t
q
e
i
.
N
+
L

the first of which vields

=11 2 .
= = oL, = o2, 2 . Sy
JY 11 1L
with ampiitude:
. 1 s ‘
I S = 1,09y, S.o-n0
L 2 3
Teuations I Len . L vielda
TTo- e e . - oL, =l e
56 Ll ~4 nb i
A . o . - . -~ ) T B
which 1s a4 guadratic equation vielding the two roots ¢ and & wich
smplitude ratios
ad ' no - . - .
L, LN “ = )'_' (O ' . o T I -
. o N

o)
3
¢4

rom £g. ..47) we obrain the Two relatis

+ = ¢, *cC < .
-t ~b = b

(2) 3 =02)_(3)

[

which 2rove -o he usetul in =his work, Zquations ' I, 2. reveal that I-r

the X-cut plate we have thickness (X) oxcitation or the plezoelectricallw
stilfened extensional mode 1nd lateral ¥) oxcitacion i hoth ~urely siasuze
shear modes which 1re coupled,

Far +he 7-out e have

Sl ey

A




which with (3.34%) - (3.37) and (3,39) yields

i
s
|
s
I}
<
)
i
[¢]
]
1
'
c

11T Teer C12 7t S13 Y S22 11t t23

- A &+ N - ) A :u)
C,L_.‘f\\ (\,-,’_' S5
the rfirst or which vields
) Ly o
N = ~o
66 11 11
with amplitudes
(1) 1) 1 .
AU At = o o,
1 2 ;
Zgquations (3,34), | vield
- D
, 5
g7 - +c T+ ~c,, =0
C (Cll Laa> C C’.lbl—’t L,l,4 .

which is5 a quadratic cquation vielding the two rvits T 7 ing
amplitude ratios

' in) 4n)\ - )

Trom £a.03.57% we oprtiain the two relations

21 ) L2 -

< [ = < & i =z

i
~

pel

(N




which are userful in this work, Equations (3,52) reveal that for the Y-cut
plate we have thickness (Y) excitation of the piezoelectrically stiffened

(X) shear mode and lateral (X) excitation of the other two purely elastic

coupled shear and extensional modes.

For the Z-cut we have
<N1’ Nz, NB) = (0,0,1), (3.60)

which with (3.3%) - ¢3.37) and (3.39) vields

~ - S Z ~. - ~ - "\ iy E = - -~ f \

€11 T g N1 700 0T 00 = e ey F 0 0y T o, (3.61

. =0, a. = : =< ‘=0, ol =5 el =0 (3,52

1 - =0 P33 € TYe 22T 080 Oy 2-)
T =7 . (3.63)
hVie 4 e 4

The substitution orf (3.63) with (3.61l) into (3.8) vields the three uncoupled
2quations
(¢,, =3Y A, =0, «c,, =T) A, =0, (¢ -C) A, =0 (3.064)
which yield
) = (2) -(3)
c

< =c,,, C =c,,, = ¢ (3,63)

along with the matrix of amplitude ratios

1 0 D]

VM=l o 1 o
0 0 1 . (3.606)
26




Equacions (3.062) reveal that ror the Z-cut plate we do not have thickness
excitation of any modes and we have lateral (X) excitation otf Y-shear only,
Since the analysis for the rotated X-cut vields no siznificant
simplification over the analysis for the doubly-rotated plate, we do not

present the results for this case here. We simply note that all three

coupled modes can be driven by both thickness and lateral oexcitations.

Tor the rctated Y-cut we have

N., MN,, ¥,y = (D, cos 3, 3in 3) ., 3,97
which with (3,34} - 1¢3.37) ana (3,39 vialds
- N M -~ -
. 2 . N
C,, =c ¢, =lisc,, *3o,,., o, =9, 2,4=0,
Y1l b6 S -
A = ~ 5
- 0 . l ~ 2
c =c ¢ - 2¢se,, +s <, C =-c c,, FCcstC,, T3, 0,
22 22 14 L4 T2 14 13 La
- b 9
€33 7 ¢S4y TS Say $3.58)
" 2 - ~ b} B
2, = ece,, -:SGIQ‘ @.=0, = =0 2., * ;3 S n
- e de — PEETY o
/ . / ’ . ~ .
2, = -3 2 - s.ie 2, FTeo,lel, Tose, EU I S R
1 AR S RS A S TS T S :
5
- o < ~ -~
= = 2 -~ —= = =) = = 1) c = - N = = =
o ~ Cy. (O < < o < . N C .
11 11 ~ 12 713 722 2723 230 TS 33
- (3,.70)

in which ¢ and s represent 2os = and sin 3, raespectivelv, The substitution

of 3.70) into 13.8) vields the two uncouplied svstems

~ .
= .= =1 o - ) - =
I R B R PR B T e S T
“ ~
T AT (C Y AL =0, 3,01
232 33 3
the tirst of which wielus
,(l)_: A:,j Ty =
- S v3.70)
Fpe L




with amplitudes

ool 1) LY 199 173)
‘\Al . A: y A} = .'; ) . (o /o
Equations (3.71), 3 yield
D ~ ~ -~ -~ ~2 -
c - (czz +c33) E-‘c::c33 -c23 =0, (3.74%)

FERAN |
. . . . . . -t PR
which is a quadratic equation yieiding the two roots & and T 7

with amplitude ratiovs

a) - 2 S <)y - R \
Y= 0, - feya=S )., a=23, 2T

T23f 22

N ==

Ffrom (3.74) we have the two relations

-~ ’) ~.
c E(")E(3) = c

33 7 2233 (3.76)

which are userful in this work, EZquations (3.69) reveal that for the

rotated Y-cut olate we have thickness (rocate. ¥) 2xcitation >t the

(st

piezoelectrically stirfened (X) cthickness-shear mode ana lateral
1) avcitation of the other two purely eiastic coupled shear anag
extensional modes,

From the foregoing it is clear that all the =2lastic constants

can be determined from measurements using lateral excitation. First

¢,, <an be determined “rom a Z-cut, then ¢,y can be determined Irom
a4

a Y-cutr and <66 from an X-cut and Cig from either a Y-cutr or an X-cuc,

Finally, both ¢ 3 and ¢ can be determined trom one rotated Y-cut,

1 7
“ )

(9]

It is also clear that the niezoelectric and iielectric constants can
be determined “rom thickness oxcitation of the fundamental and third

harmonic of 1 Y-cut or n ¥-cut and three rotated Y-cuts,

23
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We now present some of the results for a rotation about Z
even though they are not needed for the determination of the constants
at To = 25°C because one is needed for the determination of the
changes in one of the etffective elastic constants. For a rotation

about Z we have

Ny, N,, Nj) = (- singp, cos ,0) (3.77)

which with (3.34) - (3.37) and (3.39) vields

o - .
cll s c11 +c C66’ c12 sC(c12 c66)’
~ ~ 2 5
= - 2s¢c ¢ = +~ ~
C]_3 I5C \.la’ sz S C66 C bll)
J i i 3 ’ ; 13,73
Crq 58 e = +cTe,, = 7
:3 S C]_f} (& &—14, C33 s C.’;A C 44 Caa’ 3 /
~ 2 2 . ~ D 2
= - = 2 < o - =
e Sey;Tc ey, e, 2sce iy, ¢ s ,11-+c €117 %1 >
! o
S SRS S P S S A O
@y ToSjee T S,seyp. ey = Sjcey, T Syseg,. (3,79
2 s 5
T S s b S
].1 11 -311 ! 12 12 €].l ’ 13 13,
8 X
2272 T 2373 S337 %3¢ (3.30)

Since the substitution of (3,80) into (3.8) yields no significant
simplification over the doubly-rotated plate, we do not present
the detailed expressions for the coupled linear equations, the 3 -3

determinant or the amplitude ratiocs for the plate rotated about Z.




4, Perturbation of Thickness Vibratioas

We first obtain the one-dimensional expression for the
perturbation integral H from the general three-dimensional expression
given in Eq.(2.10) because the one-dimensional version is directly
useful for the treatment of thickness vibrations discussed in
Section 3. To this end we write dVO = Aodso in Eqs.(2.10) and (2.12)
and then, since the pure thickness solution does not vary along the
surface of the plate, factor out the Ao from both expressions, which

cancels out of the entire description by virtue of (2,11)., Under

these circumstances the expressions for H and N take the respective

[

forms
h
= & =gt +2 ol L i L '
T O T VYRS SV VIR VLI T B +. 1
-h
h
2 .
N~ =2 r u*u™ ds (4.2)
Y o Y] Y Vv o]
-h
where
s, = NKXK' (4.3
By virtue of the one-dimensional [thickness (so)] dependence, with
the aid of the chain rule of differentiation, we may write
= (= ; > P = 2 oo
UM (duy/Bso)(cso/vXM) NMEUJ/,SO. (&4.%)

From (3.6), (3.22) and (4.3) we see that in the present notation the

thickness eigensolutions, i.e., with V = 0, can be written in the form

~ . -~
©=DB sin

y y i, s, tCs_, (4.5
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where B is given by (3.9) and C is given by (3.23) Zor the case o

thickness excitation and € = 0 for the case of lateral excitaction

and we have suppressed the a
Subscituting from (4.5) into (4.2) and pertforming the inte-

gration, we obtain

N
N = :OhA"A*‘. (%.6)
o Y
Now, let
T - o bt ol 9 ~ RPN
AT =aAT/Y , BT =3"/N , C” =C7/N (4.7
then from (2.11), (4.%), (4.5) and (4,7), we obtain
g." = 4A" \1\!“ cos “SO \ :“‘L = N-r (g‘p”\ COS ‘S)"(:AP;\ . 4,30

Now, substituting from (4.8) into (4.1), performing the integrations

b)

and employing (4.7), (3.9), (3.11)2 3 and (3.23), we obctain

-~ ~ o
3 - < 22 o 9 2
o = A 5 y ¥ NN n ¥ - P
S RETRURYC SRS OV S Y - S I [P Y- SR S L X,
- - e 4 Vo7 ~e N2 . Voo NI b
2 oy
for the electroded thickness excited plate, where
~
¢ = NN, Ro= ONNOR L L8NNGS, =0
Mg T TLMTTU My T TM™ My L7
and since C” =0 for the unelectroded laterally excited plate, the
second expression in brackets vanishes, we obtain
~ ~ o~
- e e e -
:I . ~ ~ X ~ s/ 1"\1_1.'\'\&’)
H® =-10G + 2R — - .7 —= A"A "7 4,11
" - RVIRY R L (3,119
for the unelectroded laterally excited plate.
ror

In order to use the foregoing general anisotropic results

thickness resonators to evaluate the temperature derivatives ot the

z from data, we must

LM

effective material constants G and
© LMo’ R‘LMY

31




consider various specific orientations of quartz as in Section 3,

In narticular, we nead

doubly-rotated cuts of

zhe

2Xpressions

quartz,

~
A -

~. ~
for .G , R and A for
e "

With the aid of (4,10) and the

matrices in (2.,13) and (2.8)3, we obtain
A@ll = N NJAG) )+ N,NLAG,  + AONGAG o+ NaNaaG. .,
gﬁlz = N.N,0G, N, N,36 o+ N NLAG,
3G, = NG, + N NJ2Gy 4 & N NGI6.
;62: = NN SG o + NoNAAG, - INNAG L T NG
Gay = WN[AG,, - N¥ouGy, = NNAIG, 5 - HNLIC
6y3 = NNJAG,, NG, NJNGIGy,
26y * AGgg = Gy - 4Gy, (4.12)
Ry = NNAR - NONAR) ) - NONGER - NONLURS
Ry == 2NNLIRG ) WNGIR S # NNGIR L IR = 0 3
DI ENNJAG R NNLAL R NN YARVA

which with the results of Section J} readily =nables the determinac:on
of the relations we need for any orientation we wish,

For X-cut quartz we have (3,40), which with (&,12) - (4 14)

vields
SOy T O 6100 L6y 26,0286, L6 =26, 160576,
(4.13)
;§i = IRy, R, =0, 37 = 38y, (4. 16)




The substitution of (4.15) and (4.16) along with (3.46) into (4.9)

for the thickness (X) excited extensional mode yields

7
‘11 11 slpl.2
[AG AR 3 A%1 T AR
1 -
11 .
e e Klgl
°11 117 M4
- 42 + S S 4.17
%: Ry T+ AL, T (4.17)
11 ell

The substitution of (&4.15) and (4,16) along with (3.48) into (4.11)

for each of the laterally excited two coupled shear modes yields

o
Wun

=-| .6, A3A% + 246, A“A +146G,, (4.18)

1472773

u ull
| S—
3
[TA 13 )
j=2
.
U
"
[§%]
W

For Y-cut quartz we have (3,50), which with (4.12)- (4,14)

yields :
c = A & = T = el = A\ * = - G = A
._.Gll _‘G66, _.Glz 0 ._.G13 0, HGZ?_ ._.Gll. _G23 AGlQ' -—-G33 -—G_I‘A
(%.19)
"Rl = - ;Rll 3R3=()’ i = 1;11 (4,20

The substitution of (4,19) and (4.20) along with (3.56) into (&4.9)

tor the thickness (Y) excited (X) shear mode yields

e Tt . eilj alal 2 . °11
ul = 'Luuéé D _._*.L\ll e .3“311 2 __5 A]_AIHIh - j‘: _.ARll <
11 2 11
11
2 alal
R v bt o
“s11 T2 0 TR (4.2
11

The substitution of (4,19) and (4.20) along with (3,58) into (4.11)

for each of the laterally excited other two coupled modes vields

- 2AG =2,3. (4.22)

uy

M

W um
+.
O

b-) u‘l
| G

I
h
>

J.\
W u'\l

15
14%7




For Z-cut quartz we have (3.60), which with (4.12) - (4.14)
yields

~

3G, =86, 36,,=0, a6, =0, aG,,=4G,,, 4G,y =0, &G

Since for the Z-cut we have (X) excitation of ‘Y) shear only, the
substitution orf (4.23) and (4.24) along with (3.66) into (4.11)

yields

25
2
I
)
[0
©
w)
I'J' o
32
o N
3
f\JDju

As in Section 3 and for the same reason, we do not specialize
the results fo? the rotated X-cut, For the rotated Y-cut we have

(3.67), which with (4,12) - (4.14) yields

~ 2 2 ~ ~

= - + 2 ‘l _+ e ) = D‘ =
A0y 7 e aGgg T sl ¥ aGg, 261,70, 26),=0,

2] ) ~ 8]

— ) i I = T
8Gop = e L0y = esab e 2655, 26y = A6y,
+csAGy 4 +esaG, . HG33=L‘¢,G,+4+S 1Gqs (4.26)
~ 2 N ~ 2 2 .
'R, =-c iRy - csdR ., AR =0, AZ=c Al +s Ll 23
“Rl c “Rll cs Rl/’ JRZ D, Al=c Cpp tS =28sn (& )

The substitution of (4,26) and (4,27) along with (3.73) into (4.9)

for the thickness (rotated Y) excitation of the (X) shear mode yields

, L b
v o A +2/\N_-\‘—-_ T - - Ao [ —_— AP em ) e b
iy [“ D e B e L e s R
’ (4.28)

The substitution of (4.26) and (4,27) along with (3.75) into (4.11)

tor each of the laterally excited other two coupled modes vields




U oA n.(-'\ag ~ /\:r\,é ~ "":"*E-" 2
= - \G -~ 4 DA 2 + A T = Y
He 71200850, T 280,358y TG 8087 1 70, 2223 (4.29
For a rotation about Z we have (3,77), which with ¢4 12) - (4,
yields
~ b 9 .
N = g A - A = - g A - A
1178 26y T aGgps 20y, = o8elly, m sl
. - ) 9
e v > 2L 2,
=U13 TS0l 205, %5 b Te 26
-~ > B} ~ 5 A
_G =5 .G, -c¢ G 6., =52 -7 = .G 220
=Co3 T8 26y, T 0y by FS 26, 7 6, T b, 20
. M N ~ ~
IR, = s ;RTl - C R, IR = IsciR.., 1D = 10, i, 31
Since the substitucion of (4.30) and (4.31) into ‘4.9 >r 5,.11)

vields no significanct simplification over the doubly-rotated plate,

. . - e U
present the detailed expressions for H and H ,

-

we do not

—

From the foregoing it is clear that all 10 independent G
LA‘LAQ

¢z be determined Zrom measurements Orf the temperatura dependenca OF

the resonant irequencies of thickness vibrationm of the orientations

considered in this AGI

the

particular AG, .,
i1’

of

seccion. In s =G 26

4 56

and AGSS 2an be Jetermined from measurements three inrotated

AGQ7, ;G13 and ;G33 can be determined {rom

cuts, In addition, .G 7
1

L s

the one rotated Y-cut that is required tor the determinacion ot

and Cy3- Then can be determined from one cuct consisting ot
3

7]

“13 =51

a rotation about Z and finally LG69 can be obtained tfrom (4, 12).,
/

which can also be used as a consistency condition for the measurements.

‘urthermore,  R,,, .R and AR can, in principle, be obtained,
11 17 69
along with ;;11 and 3;33, from measurements of the temperature
lependence Or the roesonant frequencies of the thickness viorations
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of specific quartz plates, including at least one doubly-rotated
cut, which is required for ARSQ. However, in practice this is not

possible on account of the small piezoelectric coupling in quartz,

which for most cuts causes the influence of these coefficients to be

masked by the influence or the ;G,V Nevertheless, these quanti-
|

Mo’
ties can be obtained from measurements of thermally compensated cuts
such as the AT, BT and SC cuts (and others) because for these cuts
the influence of the pertinent ;GLVM& vanishes., This is discussea

in the next scction because the analvsis including trapping is
required on account of the accuracy needed to calculate these smail
gquantities. Finally, it should be noted from i%,13) that -Ry, <cannor
be obtained from measurements of cthickness resonance or have any

influence on the behavior of any resonator vibrating in an essentially

thickness mode.

5. Trapped Sneroy Resonatar

In this section we briefly discuss the solution Jor the tr.iLped

o L e - . lo, 7
2nergy resonator with significant reference *to previous work

because of its length., However, berfore we Jdo this we must discuss
the fact that the solution for the trapped energy resonator Ls
referred to the plate axes as well as the orthogonal axes of the
elgenvector triad of the pure thickness solution, while in the

previous sections of this work the coetficients are ratferred o the

A

7
. a . . - L2h
orincipal ixes of the crysctal., When the conventicnal IEEE notatiom

discussed earlier is emploved, the rotation angles © and = ire the

first two Culer ansles which determine the orthogonal transtformation azs

trom the crystal uxes to the plate axes, where the a,

ire ziven bv
=G ; :
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l cos - sin 0 ?

7
ag, = { -cos § sin ¢ cos 6 cos ¢ sin © 5.10
-~ i
sin 3 sin ¢ ~-si.. & cos ¥ cos &

Then the transformation relations for all the material tensors
emploved in this work are given by

=a,4a_a_a_c¢c .
KL v ™M S« LvMg

/ 7

O R AR TR 5 TR S ' R YRl DY
G = a

a . a B
kans - AkL? 2w sl Lty

-1

! = a_a_ T _ =a_a_ = .
I S VR Yo 2 TR s S R T SV 2
in which the primed quantities are referred to the plate axes. In

addition, since the displacement field is referred to the orthogonal
ccordinates of the eigenvector triad, which is given by the orthozonatl
transtormation ava between the principal -=xes of the crystal and the
eigenvector triad in the preceding sections of this work ana is given
bv the orthogonal transiormation Q‘V between the plate axes and the

eigenvector triad in Ref,l6, we have

In this section we use the coordinate convention of Ref,16, whereby the

5, axis defined earlier in this work is in the direction ot the X,-
4 -

coordinate axis of this section and xl and X3 lie in the plane of the

plate, We are now in a position to discuss the solution for the
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trapped energy resonator in relation to the measurement of the
constants,

It is shown in Ref,l16 that the homogeneous form of the difrfer-
ential equation governing the transverse behavior ot the nth odd

harmonic family of modes is given by

h) al al
L2~n < 2~n 2~an
2u 37u 2 u 22 ..
1 1 1 n " .(l)~n_ Rn e
M“ - -+ Qq X X + Pn = - — C uy —:ul . (5,%
TXT TS . 4h”
1 3
where
n ~1
u, = u, (X,, X £) sin (nrX./2h) ., (5.2
1 RS T sin (X, /20)
and Mn’ Qn and Pn are given in Egs.(74) of Ref.l6, and from (78), ot

o)

’ 2 2 9
“1)(1-8k£/n“~"- R) (5.6)

I

and

in the notation of this work, where :; and 2h’ denoto the mass densicw
and thnickness of an electrode. Equation (5.%) is for the electroded

region of the plate and holds for the unelectroded region provided

A (1) )

c s replaced by T . [Lf, as is sometimes the case in this work,

the trapping is produced by an insulating film instead of an electrado,
~(1 ~(
c ) in (5.4) is replaced by c(l) where

w
.
(L

and R is for the insulating film rather than an electrode. We now

take the arbitrary course of neglecting Qn in (5.4) in order to
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2liminate the mixed derivative corm, This L5 necessary in order -

nermit 2 convenient representation of the trapped z2nersy mode o

a1
-
o}

arbitrary orientation of the rectangular electrodes 2r insulatinc

films, which are being employed in the 2xperiments Deins Der>rmed,

L

rr

7t can be shown that this procedure does not vesult fa ipor:ciriol.

eITOr exXceDC In certain unusual cases that will not arise hero:

t has been shown in Secz,lIl of Rwed, Lo chat Ior ~eocansuiar

ri.

irapped enersy =lzen-soiution Zor 1V 1 an DJe wriction oo Lo ocrm
armx,
It = 2 =
J,L 2 Sin BN .
)
3 3 n~xX, -3 \xl-u)
Uy o= B” sin —j— = cos VK.,
- -
- - arX, ‘v'wZB-b5
a; = 37 sia —— :-os X, o
- 17X . “";4 =) - \'\_‘)
W, =387 sin = i ) B

where | S, T and C represent the electroded, side, top and corner

Teglions, respectively, or the positive quadrant in cooriane - wiin
- - - Luc .
rigure 3 ot Rer,l6, the e has been suppressed and
3 = - T - - o= = - -
37 =3 cos TL, B =3 zos W, 3 =3 cos Tl somo oo, e

The transcendental fra2quency equations {or the trappeda —nersy »ioon-
solution mav be written in che Zorm

= =, 5 = - [

Ttan I = 7, vy tan Wb o= oy BN




where
. k 1/2 k 1/2
=S ST A T o . =2 - 4n
I =~ n-I7) .o v sl — n-w . (2.1
N ot T, 2
n a
and
~(L) 4k
R~ A et W T = o
— :h\ : -: N , n ¢ _} 1 0 - -

ind the elzenrrequency L 2an de Jetermined Zrom che dispersion z2qua-

cion Ior the =2lectrodea region, which takes the Zomm

aand, as noted carller, Zor iasulacing Zilms Lastead >: eliectrodes

N 15 2o De rapldaced ov ¢ .

Since the main purpose, although not the only purpose, of
this section is for the determination of the temperatur: dJdependence
AL the erficetive pilezoelectric ana Jdieleccri:z constants Irom measure-
ments of thermally c¢ompensated cuts, LT i3 important =5 nog2 that n
addition to ql‘ whilch 1ppears in the expressions Ior :the Ctrapped _ner v
mode, there are both u, and us, which are an order of magnituce

smaller than u

., buc are required in this work decause the nure
L

thickness behavior is thermally compensated for the cuts or primarvy
interest in this section. Ffrom E£gs,(A5), wich (37) and :72) of
Ref, 16, we Zind that 2o lowest order in :che small wavenumbers along

the plate the displacement field or the 3 resion mav be written in

Zhe {omm

)




S — .S —
o (c¢,,3" ~c., 1V) nrX ~ZT (X -4) 1vX
S () 16° 56 7 2 1 3
= +
ul A+_ S[l ey ij sin h e 2 .
[
( =S iv) -’S(K -2) ivX
s _[ 22 " T4 L (1S SR G- L am 57 3
) an/ 2h AL COS o STk €08 K DR Pos &
( =S ¢ iv) —’S(K =) 1K
uS = rS) 3 A(I)S ar X -+iE(3)S cos an X We oo E
3° ar/’h + 98 o Mo + S 73 on o ¢
(5.13)
where
n-1 —(2) S (D) -
(s _ | 5 (F,8 7 Hey )T (B teg )iV g
C =1i(-1) 3 Ay ,
T 7, (am/2h)sin(x,nm/ 2h)
- ~(3) =S -(3) -
— (r.c +c,-)3" - (r,C +c o)1V
o) 2 {
ES“)S-.L(-l) N ? L/ 3 57 4 DIS . (5.16)
: =) PR

43(nf/2h)sin(n3nﬁ/2h)

and r2, r3, rg and r5 are defined in Eqgs. (60) of Ref.l6 while s
and K3 are defined in Eqs.(61)2 and (63)2, respectively, of Ref.l6,
It should be noted that the real part of Egs.(5.15) is understood, and
we have similar expressions for the ‘, T and C regions, which clearly
are too cumbersome to write here. However, we noca»that since we
have the product of two trigonometric functions in the B region, for
that region the entire expressions for the real part for one direction
must be written out explicitly, thereby resulting in expressions
twice as long.

The trapped energy solution presented in this section is for
small wavenumbers I and v along the plate and small piezoelectric
coupling, Consequently, only the thickness dependence of all elec-

. . . . 16 . _
trical variables has been retained in the treatment . In view of

this and the fact that the solution is referred to the plate axes and

~
r—




the eigenvector triad of the thickness solution, the perturbation

integral in (2.10) should be written in the more convenient form

=_ [ [ G o & + 2AR.T 2 VY INER
Hy=- ) [ OCanyBs By, * 2RE 58y o= 8CF HF q_} av_,  (5.17)
\Y
o

where

~

Uk aNv

Q G’ R, = 5. R

RERETA N SRR B VLV (5.18)

v

~

and 17 is the same as in Section 4. In Eq.(5.17) we have employed
the subscript 1 rfor the dominant component of the essentially thick-
ness trapped energy mode of interest in each case because that is in
accordance with the notation used in Ref,16, Consequently, we must
renumber accordingly for each different dominant mode in a given
plate., For the geometry of the trapped energy resonator considered

here from (5.17) we obtain

n P b -
r Qo - = T T
= X, | od Z+C)d> ; 3
Hy =-4 ax, d‘(1<f (F+Tyax, + u[‘ &t +cTy d‘{;)
-h o} o b
© b B
/ I !
- J' ax.! T @+cyax + [ L+ ax’ (5.12)
LA 3 J =
- o} b
where
s = 0 Y = AR £ o VI 2
7 = “OganvBe g3y, N7 CT2BRYE 58y 5 - SCE HE . (5.29)

When the data is available Eqs.(5.19) and (2,9) are to be used

~

to obtain AR, and A{ (if not known from other measurements) for

1

different trapped energy modes, including thickness overtones, of

different thermally compensated cuts, From the Aﬁl obtained from

=
r~




different orientatious, (5.18)7 and (4.13), iRll’ ARl, and LR69 can

readily be obtained. 1In a similar way from the AC

and A;33 can readily be obtaimed. 1If they are known this can be used
SLvMa will be refined

The values of the elastic constants c

and (4,14),

from the

as a check,
n

using the trapped energy analysis by calculating Mn and P
to

i Zor all

previous determination of the constants and using Eq. (5.14)
This will be done

refine E(l) ftor the constant in qjuestion,
the modes to refine all the comscants, This will be continued
ziven number >t siznificant
the

recursivelv until there is no change to a
will be rerfined tfrom

Then the piezoelectric constants
inally, redundant checks wiil

™
1

digits.
trapped energy analysis if necessary.

be made on all coefficients,
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TABLE 1

CONVENTION FOR THE REPLACEMENT OF TENSOR INDICES BY THE
EXTENDED COMPRESSED MATRIX NOTATION

Lv or

Mv 11 22 33 23 31 12 32 13

p or q 1 2 3 4 5 6 7 8
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